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Abstract Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study
a first-passage problem of mortal random walkers in a confined two-dimensional geome-
try. We provide an exact expression for the encounter probability of two walkers, which is
evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations.
We analyze the continuum limit which is approached very slowly, with corrections that van-
ish logarithmically with the lattice size. We then examine the influence of the shape of the
lattice on the first-passage probability, where we focus on the aspect ratio dependence: Dis-
torting the lattice always reduces the encounter probability of two walkers and can exhibit a
crossover to the behavior of a genuinely one-dimensional random walk. The nature of this
transition is also explained qualitatively.

Keywords Mortal random walk · Reaction-diffusion model · First-passage problem ·
Geometry · Astrochemistry

1 Introduction

Random walks are ubiquitous in statistical physics as well as in the description of many
natural phenomena. One key example is the study of diffusion-reaction systems.

In our particular case, one motivation for the following examination comes from a long-
standing astrophysical puzzle, namely why there can be a large abundance of molecular
hydrogen in interstellar clouds of gas and dust compared to the concentration of atomic
hydrogen. For realistic conditions, the generally accepted mechanism is as follows [1–4]:
Reactants impinge onto the surface of dust grains in a homogeneous fashion. They diffuse
on the surface. Additionally, they desorb at a certain rate. If two such atoms meet during
their traversal of the surface, they react to form a hydrogen molecule which immediately
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desorbs. We will sometimes refer to the recombination efficiency of such a system, defined
as the fraction of impinging atoms that eventually react to yield a molecule.

To study the catalytic role of the dust grains in the astrophysically relevant regime of a
small average number of atoms on the grain, one sets up a zero-dimensional master equation
for the distribution of the number of reactants on a single grain, including terms for depo-
sition, desorption and reaction, and solves for the stationary state of the system [5, 6]. Rate
equations for the mean adatom number do not suffice as they cannot account for crucial fluc-
tuations and the non-POISSONian statistics of the reactant number that is induced by their
confinement to a finite closed surface on which the reaction takes place [6, 7]. Within such a
master equation treatment, apart from obvious single-atom rates, there only occurs a single
two-particle parameter, viz. the sweeping rate describing how often a pair of atoms on the
grain meets. One convenient way to express this parameter is by means of the encounter
probability originally introduced in [8] in a continuum setting. This is the key quantity of a
first-passage problem of two mortal random walkers: Mortality (i.e., terminating a random
walk with a certain probability per step) corresponds to desorption of the atoms on the sur-
face, the random walk to their diffusion, and the question (of first-passage nature) is whether
the two walkers meet before either one dies, quantified by the encounter probability.

In general, a realistic full diffusion-reaction model has to be examined by microscopic
Monte Carlo simulations (see e.g. [9]). This is mostly owed to the fact that applications, and
especially the astrophysical problem we described, call for the inclusion of disorder in the
local rates of hopping and desorption, a feature hard to tackle analytically in more than one
dimension. Despite the vast literature on diffusion properties in disordered media this even
holds true (to the best of our knowledge) when we focus on the basic level of the encounter
probability.

Still, it is useful to start with the analysis of simple homogeneous models that are acces-
sible rather easily, both to establish a reference point for the validity of simulations and to
make progress in the analytical exploration. On the level of the encounter probability this
means we can employ results from the theory of homogeneous random walks. Furthermore,
the discrete random walk model allows us to extend the generality step by step to different
lattice types and shapes, hopefully providing deeper insight into the importance of these
factors. Finally, it is expected that the problem will have some fundamental appeal for the
theory of random walks in relation to reaction-diffusion systems in general.

Examples from seemingly remote fields to which this analysis might bear relevance
include second-layer nucleation in epitaxial crystal growth [8], chemical kinetics inside
aerosol droplets [10], biophysical problems like exciton trapping on photosynthetic units
[11] and a range of search, transport and binding processes of or along DNA strands [12, 13].
Admittedly, in the latter case the homogeneous situation is only a first step to meaningful
results, and the crucial two-dimensionality of our problem does not necessarily apply either.

Our goal in this paper is thus to further elucidate the meaning of the encounter probability,
examining the pitfalls of the continuum limit to aid comparison to Monte Carlo simulations,
and to analyze the influence of the lattice type and, most importantly, different geometries.
We strive for a completely analytic theory to fully explain all findings of simulations. To
this end, we will proceed as follows: Sect. 2 will first introduce the model and basic defini-
tions along with our notation. We will then show how the fundamental quantity that we call
‘encounter probability’ can be obtained from a simple random walk calculation, and will
analyze its asymptotic behavior. In Sect. 3 we investigate the subtle continuum limit which
implies a logarithmically slow convergence to results obtained in a continuum model, which
is crucial for comparison to simulations. We supplement this by simulation results in Sect. 4.
In Sect. 5 we extend the random walk calculations to a rectangular lattice to examine the role
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of the lattice shape, analyzing a quasi-one-dimensional limit and deriving and explaining the
effect of a distorted aspect ratio. Finally, we present our conclusions.

2 Random Walk Treatment

2.1 Model and Definitions

We consider a homogeneous two-dimensional lattice with periodic boundary conditions,
meaning that all S = L1 · L2 sites are equivalent. Two walkers are randomly deposited on
two (not necessarily different) sites of the lattice, then they move between nearest-neighbor
sites with an undirected hopping rate a, and may desorb at a constant rate W � a. Whenever
the two meet by one hopping onto the site occupied by the other (or by coinciding initial
positions), they react and this random walk realization has ended successfully; the proba-
bility (averaged over random walk realizations and initial positions) at which this happens
before either of the two walkers desorbs is called the encounter probability p (subscripts
will denote certain models and/or simulations from which it is obtained, as well as further
specializations).

Here we will treat a discrete-time random walk, although a continuous-time version
(CTRW) with an appropriate waiting time distribution might seem closer to the physical
system at hand. We do this in order to keep the analytical treatment as simple as possible,
and we will later argue and numerically prove (Sect. 4) that the discrete version accurately
describes our situation. Due to homogeneity of the lattice, the problem in fact reduces to
that of a single walker meeting a target site, cf. Appendix A.

2.2 Exact Results

Quite generally, we are concerned with finite lattices translationally invariant in all direc-
tions, which extend to Lj lattice sites in the j th of d dimensions before periodically con-
tinuing. The exact expression of the random-walk encounter probability on such a lattice is
re-derived in Appendix A and reads [14]

p−1
rw = (1 − ξ)SP∗(0; ξ) =

∑

m∈Ω

1 − ξ

1 − ξλ(2πL−1m)
. (1)

Here,

ξ = 1 − W

a + W
= a

a + W
= 1

1 + W/a
� 1 (2)

is the survival probability per step, S = ∏d

j=1 Lj is the total number of sites, and P ∗(0; ξ) is
the number of times a mortal walker on a periodic homogeneous lattice returns to the origin.
Ω denotes the lattice, m is a ‘lattice vector’ of d integer components 0 ≤ mj ≤ Lj − 1
with j = 1, . . . , d , and L = diag(L1, . . . ,Ld). Finally, λ is the structure function (basically
a discrete FOURIER transform of the normalized transition probability) of the walk. We
specify to d = 2 at this point, where it reads λ(k) = (cos k1 + cosk2)/2 for an isotropic
walk on a square lattice that we will further on label as being of ‘type (a)’, and λ(k) =
[cos k1 + cosk2 + cos(k1 + k2)]/3 for the isotropic walk on a triangular lattice (coordination
number 6), now designated as ‘type (b)’.

We focus on the two-dimensional case with both lattice lengths much larger than unity
and with ‘long survival’ defined by 1 − ξ � 1. The expression (1) then affords several
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regimes, characterized by the comparison of dimensionless ‘lengths’. Introducing the typical
single-atom random walk length

� = √
a/W =

√
ξ

1 − ξ
� 1 (3)

and with lattice dimensions L1,2 � 1, one can associate 1 � � � L1,2 with ‘large’ lattices,
and 1 � L1,2 � � with ‘small’ lattices. The intermediate regime in which one lattice length
is smaller, yet the other larger than the random walk length is to be discussed in a later
Section.

For a still fairly large class of walks that includes the two cases (a) and (b), one sum-
mation in (1) can be carried out explicitly [11]. Appendix B gives the result, which we
generalized to include the case L1 �= L2. Whenever we need to numerically evaluate prw

we use the resulting single-sum expression, further simplified for the two lattice types, and
implemented in a small GNU Octave script.

The encounter probability as given above allows for the two random walkers to start on
one site, and this counts as an encounter on the zeroth step. For applications and comparison
to other models or simulations, we will often need to deal with the encounter probability
p̃rw calculated such that it only accounts for meeting of the walkers by hopping, and that
does not allow the initial condition of walkers starting at the same site. The two quantities
are related by

prw = 1

S
+

(
1 − 1

S

)
p̃rw, (4)

as becomes obvious by splitting up prw according to the starting site of the second walker,
i.e., either on the same site as the first one (with probability 1/S), or on any other site (with
probability 1 − 1/S). This leads to the expression

p̃rw = Sprw − 1

S − 1
(5)

in terms of prw, and p̃ with other subscripts will henceforth denote probabilities p that are
obtained from other models using the corresponding analogous convention, i.e., excluding
an encounter due to coinciding initial positions. In the context of hydrogen recombination on
dust grain surfaces, the corresponding mechanism is the ‘Langmuir-Hinshelwood rejection’
of atoms that impinge on top of another; see e.g. [15] and references therein for early original
work.

2.3 Large Lattice Approximation

Large lattices, formally given by S � a/W � 1 or, more precisely, by 1 � � � L1,2, can
equally well be defined as the regime in which boundary conditions, and (apart from the
initial placement) the overall number of sites of the lattice no longer matter at all—even
if the boundaries truly affected the random walker (say, by reflection), it either approaches
the target or experiences the finiteness and (possibly) boundedness of the lattice, but never
during one single walk. It is thus safe to simply send L1,2 → ∞ in P ∗(0; ξ) in (1), by which
procedure the sum becomes an area integral (P (0; ξ) in the standard notation used in the
Appendices). Some more details on the ensuing approximations are given in Appendix C,
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with the result that1

prw ≈ a

SW

{
π 1

ln[8a/W ] square lattice,
2π√

3
1

ln[12a/W ] triangular lattice,
(6)

with relative errors of O(1 − ξ).

2.4 Small Lattice Approximation

Here we have 1 � L1,2 � � or a/W � S � 1. Again, we employ results for P ∗(0; ξ) from
the random walk literature.

For the moment, we restrict ourselves to the case L1 = L2 = √
S. The expansion for

1 − ξ � S−1 � 1 then reads

P ∗(0; ξ) = 1

S(1 − ξ)
+ c1 ln(cS) + O

(
S−1, S(1 − ξ),

√
1 − ξ)

)
, (7)

where c and c1 are real constants. This is shown in [11], also presenting the first calculations
that deliver upon the important pre-factor inside the logarithm (for square and triangular
lattices), which were extended and subject to minor corrections in [14] (cf. the earlier and
easily accessible derivation in [16], which unfortunately does not give this pre-factor). For
the encounter probability one thus obtains

prw ≈ 1 − SW

a
c1 ln(cS). (8)

It is important to note that the original expansion is valid in the regime
(1 − ξ)Sπ−1 ln(cS) � 1, or equivalently, 1 − prw � 1. This would thus be a more pre-
cise definition of a ‘small lattice’.

The constant c1 has the value 1/π for the square lattice case (a), and c1 = √
3/(2π) for

the triangular lattice (b), respectively. The crucial factor c inside the logarithm appears in
the different guise c2 in [11], related to ours by c2/c1 = ln c. For the square lattice the ratio
yields

ln c = π

3
+ 2

(
γ − lnπ + 1

2
ln 2

)
+ 4

[
e−2π + 3

2
e−4π + 4

3
e−6π +· · ·

]
≈ 0.612807020, (9)

while for the triangular lattice this becomes

ln c = π

2
√

3
+ 2

(
γ − lnπ + 1

2
ln 3

)
− 4

[
e−√

3π − 3

2
e−2

√
3π + 4

3
e−3

√
3π − · · ·

]

≈ 0.853262084, (10)

where we used standard rounding and checked the consistency of the numerical evaluation
against the original figures and, when available, improved ones from [14]. Here and in what
follows, γ ≈ 0.5772156649 denotes EULER’s constant.

1For all approximations in this and the following Section it is justified to treat 1 − ξ and (1 − ξ)/ξ = W/a

synonymously due to ξ � 1, which will no longer be mentioned when it only introduces higher-order errors
compared to the desired accuracy. Moreover, we will treat logarithms as being of the order of unity. This
might make some expressions more cumbersome, but it is numerically adequate.
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3 Continuum Limit

A natural question to ask is whether the model described above yields a reasonable con-
tinuum limit for L1,2 → ∞; on the one hand, since such continuum limits are of genuine
theoretical interest in themselves, on the other hand, since we have earlier solved a contin-
uum model [7] to compare against. The answer will also provide important information for
the comparison between analytical theory and simulations.

The proper scaling of the discrete random walk parameters then proceeds as follows.
We want to stay in the same regime of the system, which means we need to keep both ratios
Lj/�, and consequently SW/a, fixed. Further, we do not want to distort the given aspect ratio
of the lattice, so that L1/L2 is kept constant as well (a moot point as long as we use quadratic
lattices, i.e., L1 ≡ L2 anyhow). With these constraints we let the number of adsorption sites
become very large, S → ∞. Such a joint limit preserves all quantities in our expressions
that only depend on the ‘regime parameter’ ∼S(1 − ξ). The limiting behavior can thence be
determined from the corresponding approximate results for the two regimes separately.

In the continuum (or “diffusion”) model proposed in [7], a stationary diffusion equation
for the probability density of a moving atom is solved on a spherical surface, and given an
absorbing ‘target area’. The encounter probability is then calculated as the (suitably normal-
ized) diffusion current entering this area. The results will be denoted by pdiff.2

We will also refer to results for p obtained from random walk theory, however in a
heuristic fashion [7], using known expressions for Ndis, the average number of distinct sites
visited by a random walker after it has taken a given number of steps. The asymptotic result
is that after n � 1 steps (on a two-dimensional regular lattice),

Ndis ≈ πn

C ln(Bn)
(11)

with real positive constants C and B depending on the lattice type, viz. C = 1 and B = 8 for
the square, and C = √

3/2 and B = 12 for a triangular lattice, respectively (see e.g. [17]).
The encounter probability derived on this route will be labeled prw,heur. Note that the above
Ndis is the leading term of an asymptotic expansion, and thence a poor estimate for moderate
values of n.

In the comparison of analytical results, we allow for walkers to meet by coinciding initial
positions throughout, and we incorporate corresponding terms in the diffusion models as
well; in short, we always use p and not p̃.

3.1 Large Lattices

The random walk result prw has been given above. Its diffusion model analogue reads

pdiff ≈ 4ga

SW

1

ln(4a/W) − 2γ
, (12)

where g denotes a lattice-dependent factor; it is g = π/4 for the square lattice, and g =
π/(2

√
3) for the triangular lattice, respectively. The heuristic result obtained from Ndis is

prw,heur ≈ πa

CSW

1

ln(Ba/W)
, (13)

2Note that the cited article differs in that it uses this notation for only a certain contribution to the full
encounter probability.
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with B , C as defined above. Since comparison between the factors g and C immediately
shows that for our cases 4g = π/C, we see that not only the functional dependence, but also
the numerical pre-factors of all three expressions prw, pdiff, and prw,heur coincide.

As far as the factor inside the logarithm is concerned, it is not too surprising that prw

and prw,heur agree as well. However, the diffusion model expression pdiff clearly differs here,
though this becomes irrelevant in the true limit S → ∞. Note that there is no longer any
imprint of the lattice type, as opposed to the discrete result. We should emphasize that in [7]
care was taken that in the given form of the asymptotic expressions, all omitted terms are of
higher order, particularly in the denominator expression, where further terms are of ‘poly-
nomially’ smaller order than unity.

With this, the relative error of pdiff with respect to the random walk expressions can be
calculated to yield

Δ = lnB − 2(ln 2 − γ )

ln(a/W) + 2(ln 2 − γ )
. (14)

Since 2(ln 2 − γ ) ≈ 0.23 and taking into account the values of B this means that in the large
lattice regime, the diffusion model encounter probability (and in its trail the sweeping rate
and the recombination efficiency) systematically exceeds that given by the random walk
result. The discrepancy vanishes in the continuum limit S → ∞, however it only does so
like 1/ ln(a/W) or as 1/ lnS (since SW/a = const.).

3.2 Small Lattices

The earlier results to compare the prw asymptotics against are as follows: For small lattices,
we obtained the diffusion model expression

pdiff ≈ 1 − SW

4ga

[
ln(S/g) − 1

]
, (15)

with g as defined in the previous Section. The heuristic random walk derivation yielded

prw,heur ≈ 1 − CSW

πa
ln[BC/π · S]. (16)

Including the factor c1 occurring in prw of (8) in the relation established between g and C,
we observe that it satisfies

c1 = 1

4g
= C

π
. (17)

Thus once again, the pre-factors as well as the functional dependence of all three expressions
agree.

Turning to the pre-factor inside the logarithm, we have to resort to the numerical values
of ln c as given in Sect. 2.4. Starting with the prw,heur expression, numerical evaluation of the
corresponding ln BC/π yields numbers of 0.934711656 and 1.196335728 for type (a) and
(b) lattices, respectively. While not in good agreement with the values for ln c, this is still
reasonable: Apart from the nature of the Ndis expansion, the ensuing heuristic derivation
asserts that the walker does not die until it has traversed all S sites, and includes inversion
of the transcendental equation Ndis(t) = S which is approximated by one iteration. It is
the very pre-factor just mentioned that suffers from this approximation. In contrast, the
analogous factor in the diffusion model result reads − lng − 1, and numerical evaluation
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provides −0.758435525 . . . and −0.902276561 . . . for types (a) and (b), respectively, both
completely off.

For S → ∞ with SW/a = const. we will eventually still leave the small lattice regime as
p drifts away from unity, cf. our earlier remark regarding the used expansion. To measure
the error of the diffusion model, it is hence more appropriate to compare the complements
1 − p of the two models, leading to a relative deviation

Δ′ = − ln(cge)

ln(cS)
< 0 (18)

of the diffusion model outcome relative to that of the random walk. Obviously, again the
diffusion model delivers an encounter probability systematically larger than obtained from
the random walk model, and again, this discrepancy vanishes only logarithmically with the
system size S → ∞.

3.3 Results

Besides the interest in the exact encounter probability of the random walk prw and its lim-
iting behavior for the two regimes, we now have established that its asymptotics differ in
logarithmic terms from that of the continuum model pdiff. While the difference between
discrete model results and those of the continuum model vanishes in the true continuum
limit S → ∞, W/a → ∞ with SW/a = const., it does so only logarithmically in the sys-
tem size S: This slow convergence is an inevitable direct consequence of the marginality of
spatial dimension two for the random walk and diffusion, unfortunate for the comparison of
discrete-space simulations to analytic results.

We finally plot (Figs. 1 and 2) the relative discrepancy of the exact results of the diffusion
model pdiff with respect to that of the random walk prw per cent, i.e., 100 · (pdiff − prw)/prw

Fig. 1 Relative difference (in
percent) of 1 − pdiff w.r.t.
1 − prw for SW/(4a) = 10−3

(top) and SW/(4a) = 10−2

(bottom, still a small lattice),
type (a) (dashed/squares),
type (b) (dotted/triangles);
thinner lines the prediction −Δ′
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Fig. 2 Relative difference (in
percent) of pdiff w.r.t. prw for
SW/(4a) = 100 (top, already a
large lattice) and SW/(4a) = 101

(bottom), type (a)
(dashed/squares), type (b)
(dotted/triangles); thinner lines
the prediction Δ

for the large lattice regime, substituted by the relative difference of the complements (1−p)
for the small lattice plots. Inside a single plot, we sample lattice sizes determined by the
lengths L1 = L2 = L being the closest integers to give S = 4×102, 4×103 . . . , viz. L = 20,
63, 200, 632, 2000, 6325. Simultaneously, log(a/W) = 2, 3 . . . increases with lattice size,
such that the ‘regime’ parameter SW/(4a) stays nearly constant and we properly approach
the continuum limit. To compare, we also plot the error estimates Δ and Δ′ as appropriate
for the given regime.

In both regimes the error predictions nicely agree with the discrepancy of the exact re-
sults, with increasing precision the further we go into a certain regime. This also verifies that
the asymptotic results used to derive the estimates are correct, and that the discrepancy is not
due to any relevant terms erroneously omitted. The error generally shows the predicted slow
logarithmic decrease in the system size. Moreover, one can clearly see that it is considerable
for all lattices, even for the largest ones, and the error even increases the further we enter
one regime.

4 Simulations

We already mentioned that in many applications, the full microscopic kinetics is simulated
within the Monte Carlo approach. Thence here we quantitatively compare our analytic pre-
dictions for the encounter probability to the corresponding simulation results. It is fairly
easy to simulate both, the stochastic two-particle system for which we defined the encounter
probability p, but also the ‘full’ diffusion-reaction system including continuous stochastic
deposition of new random walkers, yielding results for the recombination efficiency of this
process.

We use a standard kinetic Monte Carlo algorithm to keep track of individual atoms de-
posited onto, hopping around on and desorbing from the lattice. As in the random walk de-
scription, the lattice is homogeneous, with periodic boundaries. All waiting times for events
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are stochastically distributed according to an exponential distribution with the average wait-
ing time given by the inverse rate of the corresponding process. In the simplified case of
the two-particle simulation we consider two independently moving and desorbing atoms
in continuous time—though with an arbitrarily rescaled time step permitted by the homo-
geneous environment. This is the simplest implementation of the continuous-time random
walk (CTRW) introduced by [16].

The algorithm respects the Langmuir-Hinshelwood rejection described earlier, i.e., atoms
impinging on top of occupied sites are repelled. Hence for faithful comparison between
simulation and random walk theory, in this whole Section we will refer to p̃rw instead of prw.

Let us first relate what follows to earlier work. The simulation of a single moving (and
possibly desorbing) atom that is to meet a fixed immortal target site in a homogeneous
environment (hence the situation used in deriving prw) obviously obliterates any notion of
continuous time and can be fully described in terms of steps of the walk. It is therefore a
truism that any correctly working microscopic Monte Carlo simulation of such a system has
to converge to prw if we sample enough individual trials. For the case without desorption
(where the interest is not in the probability of an encounter, but rather in the statistics of the
number of steps this takes), the predictions of [11] have been confirmed by Monte Carlo
simulations in [18], where the effect of alternative boundary conditions of the finite lattice
is also examined.

Now if both reactants can move and desorb, it makes sense to simulate them in contin-
uous time to let all events happen in an ordered fashion, and this is what we have done in
all simulations we refer to herein. The equivalence of both scenarios (two walkers vs. one
walker, and regarding the encounter probability) was clear in the stationary diffusion model,
due to its continuum nature, the absence of any time, and its dealing with a “concentration”
that is obtained by averaging over random walk realizations. For the single instance of the
CTRW we note that (in our homogeneous setting) we can still treat one of the two walkers
as fixed: If it is to make a move, we may simply re-label lattice sites accordingly and let the
other walker perform an appropriate step instead. If it dies, the trial is ended as well as if the
other walker had died. Hence the system can equally be described as a single walker that is
to meet a target site, hopping and dying at twice the rates of each of the two original random
walks, and still with exponentially distributed waiting times. This change of rates does not
alter the survival probability per step and thence does not change the encounter probabil-
ity. Moreover, while the number of steps performed in a given time is a stochastic quantity
for the CTRW (as opposed to the discrete-time random walk, their relation for a huge class
of waiting time distributions examined in e.g. [19]), the time passed never matters for the
encounter probability, so that a description in terms of steps only is fully justified.

Indeed, we can report excellent agreement of the encounter probability p̃rw obtained from
the random walk model with that found in Monte Carlo simulations, p̃mc, see Appendix D
for details. This holds for arbitrary parameters S and W/a, as well as for both types of
lattice, and gives credence to the correctness of our simulation method.

To obtain p̃mc we sampled N = 106 individual trials (except for the largest S and �,
where we chose N = 105 due to time constraints) of the Monte Carlo simulation of two
atoms moving in continuous time. Such a repeated sampling of independent BERNOULLI

trials with (unknown) exact success probability p (corresponding to recombination in our
context) yields an absolute standard deviation of the outcome of σ = √

p(1 − p)/N . Thus
σ̃ = σ/p, evaluated using the (known) values for p̃rw, is the expected relative standard
deviation for simulations. Obviously σ̃ becomes fairly large for small p, i.e., approaching
the large lattice regime.

The binomial distribution for the number of recombinations with fixed success proba-
bility p of the individual trial and for the number of samples N → ∞ tends to a Gaussian
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Fig. 3 Random walk encounter
probability prw as a function of
the (logarithmic) grain size for
W/a = 10−5, and for a type (a)
(dashed/squares) or a type (b)
(dotted/triangles) lattice,
respectively

distribution, so the distribution for the numerically found p̃mc should tend to a normal dis-
tribution with the above standard deviation. Roughly a third of all results are then expected
to lie outside a corridor of half width σ̃ due to fluctuations; counted over all simulation
data points for the quadratic lattices we find precisely 26/78 values outside this range. The
largest deviations from p̃rw are of the order of less than 3σ̃ , with the largest absolute de-
viations smaller than 7%. Furthermore there is no systematic over- or underestimate of the
theory. Similar results were obtained for rectangular lattices (see Appendix D). We conclude
that the simple random walk result describes the continuous-time simulations to excellent
accuracy. On a side note, this shows that the diffusion model results would completely fail
to describe simulation results, most pronounced in the large lattice regime.

The excellent agreement between simulations and random walk theory allows us to re-
visit the effect of the lattice type on the recombination efficiency, which was discussed in [7]
with reference to the Monte Carlo simulations reported in [9]. We have seen above in Sect. 3
that, to leading order, the lattice type enters the encounter probability through the multiplica-
tive constant (17), which differs by about 15% between the square and triangular lattices.
The effect obtained using the full, exact expression for prw is of the same order or smaller,
as illustrated in Fig. 3. Since neither the sweeping rate A nor the recombination efficiency
depend more strongly on the lattice type than p itself [7], we may conclude that significant
lattice type effects cannot be expected in simulations that faithfully represent the reaction-
diffusion model treated in this paper. The discrepancy with the results of [9], where efficien-
cies on square and triangular lattices were found to differ by a factor of 2, thus remains.

5 Shape of the Lattice

As was mentioned in [7, 8], the diffusion model results for the encounter probability can be
compared to those obtained in a completely analogous way for a flat disc with a reflecting
outer boundary and a fixed absorbing target in its center. A detailed analysis (again also
accounting for encounters “by deposition”) shows that upon natural identification of the
parameters, in both regimes the functional form and pre-factors coincide, but while in the
“large-disc” regime the asymptotics reproduces the sphere result (12) exactly including the
logarithmic factor (or coequal O(1) terms), it slightly differs in the “small-disc” regime,
where

pdiff,disc ≈ 1 − SW

4ga

[
ln(S/g) − 3/2

]
, (19)

with the lattice factor g defined before. Numerical evaluation shows that there is only a small
(of the order of a few percent) difference of both models in between these limiting cases.
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This re-assures our conviction that curvature effects should not matter with S � 1: The
basic reason is that the radius of curvature (in units of lattice spacing) is of the order of
the system size. The absence of any effect is obvious for the large-lattice regime, when a
random walk typically does not travel a distance long enough to feel the radius of curvature,
� � √

S. But as soon as � ∼ √
S, nearly the whole lattice is swept by the walk anyway, the

small fraction not explored not depending on curvature, but on the failure of locally dense
exploration.

Note that the difference of the logarithmic factors of sphere and disc in the small-lattice
regime appears in the same order of magnitude as the discrepancy between lattice and con-
tinuum models in Sect. 3, although the former models (in contrast to the latter ones) substan-
tially differ in topology and boundary conditions. While at some point we had considered
curvature and connectivity effects responsible for the discrepancy between the diffusion
model result and that obtained for the random walk, this comparison strongly (and quantita-
tively) suggested otherwise.

It is clear, however, that boundary conditions and the general shape of the lattice should
have some effect on the random walk properties (at least in certain parameter regimes),
and possibly on the encounter probability p. Related questions concerning the importance
of confined geometries, without desorption and correspondingly focusing on mean first-
passage times instead of first-passage probabilities, have been examined in detail in a recent
remarkable series of papers [20–22]. Moreover, as we have seen, the peculiarities of spatial
dimension two are very important for the features of p—what happens then, is one naturally
ensuing question, if we distort the lattice shape in such a way that it becomes effectively
one-dimensional?

In view of the line of thought of this article we focus here on the analysis of a torus lattice
(periodic and rectangular) with distorted aspect ratio, that is, with different lengths L1 and
L2 in the two directions. We will refer to the case L1 �= L2 as rectangular, while we call
L1 = L2 a quadratic lattice, the latter not to be mixed up with the term square that we use
exclusively to label a certain lattice type (i.e., its internal structure) as opposed to its shape
or geometry.

Let us therefore refine our notion of small and large lattice regimes. We still assume all
three lengths L1, L2, � � 1 throughout. Without any loss of generality, let L2 ≤ L1, but we
might further specialize to L2 � L1. Ordering lengths, we are then left with three (instead
of our former two) asymptotic regimes defined by the ordering of length scales:

• 1 � � � L2 ≤ L1.
• 1 � L2 � � � L1.
• 1 � L2 ≤ L1 � �.

The first case corresponds to the earlier large-lattice regime; the third case to small lattices.
The intermediate regime in which the walk easily sweeps one dimension but is typically
short compared to the other is a new property. We define the aspect ratio as μ := L2/L1 ∈
(0,1].

We will dismiss the large-lattice case for most of the sequel. In this regime, boundaries
are effectively not felt by the random walker, and the appropriate double integral limit of (1)
yields a result that only depends on the total number of sites S (and no longer on L1,2), as
given in Sect. 2.3.

5.1 Overall Behavior

We keep S and ξ constant and show the encounter probability prw on a type (a) square
lattice as a function of (the logarithm of) the aspect ratio μ for both, one absolutely small
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Fig. 4 Encounter probability (on
a square lattice) as a function of
logμ, for fixed sizes S = 4 × 106

(thick) and S = 4 × 102 (thin),
respectively, and
SW/(4a) = 10−2 in both cases

Fig. 5 As Fig. 4 with
SW/(4a) = 1

(S = 4 × 102) and one absolutely large lattice (S = 4 × 106). In Fig. 4, we start in the
small-lattice regime for the quadratic case (rightmost in the plot), whereas Fig. 5 starts in
the large-lattice regime. There is no qualitative difference between the two lattice types with
respect to any plot.

In all cases the encounter probability shows a strong monotonic decline upon distortion
(i.e., moving left in the Figures), though with a less pronounced shape and ending at a fair
fraction of its peak value for the absolutely small lattice. We will first analyze several aspects
of this transition, finally putting our findings together in a qualitative explanation.

5.2 Extreme Distortion

We start with a simple observation. First, let us use the two-dimensional result for prw on
a type (a) square lattice, and let one lattice dimension shrink to one lattice unit only (S =
L1L2 = L · 1). What we get from (1) is

p−1
rw =

S−1∑

m=0

1 − ξ

1 − (ξ/2) (cos(2πm/S) + 1)
, (20)

where we have not yet used any summation results. Second, we immediately start with a
genuine one-dimensional lattice, and then the sum for an unbiased walk (different structure
function!) reads

p−1
rw,1d =

S−1∑

m=0

1 − ξ

1 − ξ cos(2πm/S)
, (21)

which is obviously different from the former limit. We see that prw,1d > prw for equal num-
ber of adsorption sites S and equal ξ .
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The explanation of this result of an “extremely distorted” situation provides some insight
for the general problem. In the two-dimensional version, the walker still performs steps in
the direction in which there is only one lattice unit length (of the periodic lattice), and one
can imagine it as walking around on a very ‘thin’ torus with one dimension completely
“wrapped up”. Contrary to this, the truly one-dimensional walk only performs steps in the
direction in which the lattice is extended. The net effect is that the two-dimensional walker
wastes on average half the number of steps it takes by walking in the ‘wrong’ dimension
and not coming any closer to the target site. In fact, this suffices to re-gain one result from
the other heuristically: The 2d-walk corresponds to a 1d-walk with the same desorption rate
W , but with the undirected hopping rate effectively halved by the useless waiting steps,
a → a/2. This change translates to (1 − ξ)/ξ → 2(1 − ξ)/ξ , and minimal manipulation of
the two expressions given above shows that this casts the 1d-walk result into that for the
two-dimensional walk (see [23] for a related discussion).

5.3 Small Lattices and L1 �= L2

For the following analysis, we generalized the asymptotic result for P ∗(0; ξ) of [11, 14]
to the case L1 �= L2, at least in the vicinity of the square lattice. To this end, one mainly
has to diligently separate the different Lj s in the derivation and to check that the individual
steps continue to hold. Based on the generalized exact expressions given in Appendix B, we
obtain

P ∗(0; ξ) = 1

L1L2(1 − ξ)
+ lnL1

rπ(1 − 2q0)

+
L2

3L1
+ 1

rπ
[2γ + 2 ln(2/π) − ln(1 + η)] + S

(0)

3 /r

2(1 − 2q0)

+ − 1
3 + (3η−1)π

36r

L2
L1

+ S
(1)

3 /r

2(1 − 2q0)L1L2
+ O(L−4) + O(1 − ξ)1/2, (22)

where, first of all, terms are arranged in orders of
√

1 − ξ , as this is the smallest quantity,
and, inside, according to orders of L1,2. The parameter q0 is the probability a step is di-
rected into a particular lattice unit direction, q1 and q2 denote transition probabilities into
the diagonal directions, cf. Appendix B. Furthermore, we adopted the definitions

r = 2[(q0 + 2q1)(q0 + 2q2)]1/2

1 − 2q0
, η = q0(1 − 2q0)

(q0 + 2q1)(q0 + 2q2)
− 1, (23)

which take the values r = 1 = η for the square lattice case (a), and r = √
3/2, η = 1/3

for the triangular lattice case (b). The only parts in the above expression that have to be
explicitly evaluated for the two lattice types are the sum contributions S

(0,1)

3 . Unfortunately,
their generalization to L1 �= L2 is reasonably feasible only for the square lattice case (a), on
which we now focus and where

S
(0)

3 = 4

π

(
e−2πL2/L1 + 3

2
e−4πL2/L1 + 4

3
e−6πL2/L1 + · · ·

)
,

S
(1)

3 = −4π

3

(
L2

L1

)(
e−2πL2/L1 + 3e−4πL2/L1 + 4e−6πL2/L1 + · · · ) (24)
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+8π2

3

(
L2

L1

)2(
e−2πL2/L1 + 6e−4πL2/L1 + 12e−6πL2/L1 + · · ·

)
.

Due to the nature of the involved approximations, the expansion is asymmetric in the
lattice lengths. In the form given above, L2 is the limit of the ‘inner’ sum that is explicitly
and exactly evaluated (see Appendix B), while the other length L1 appears as the upper limit
in several Euler-MacLaurin formulae in the derivation. Therefore we expected the result
would fit best for the case where L2 ≤ L1. This is the ordering we will consistently assume
throughout the following.

The detailed assumptions on the length scales that enter the result are as follows: First,
we need L1L2(1 − ξ) � 1 for the general form of the P ∗ expansion to be meaningful,
cf. [11, (B35)]. Further, the result relies on the fact that the dimension for which the sum
is explicitly evaluated is small, L2 � � = √

ξ/(1 − ξ) ≈ 1/
√

1 − ξ , necessary for the used
expansion of the first summand to converge (ibid. (B11), (B12), while the other is absolutely
large L1 � 1 (for applicability of the EULER-MACLAURIN formula). Lastly, L2/L1 must
not be too small (owed to convergence in (B28) ff. ibid., also see (24)). This set of conditions
applies to the small-lattice regime whenever L2/L1 does not become too small; but it is also
satisfied for the intermediate regime provided that additionally, L1L2(1 − ξ) � 1.

It is fairly obvious that under certain conditions we may exchange the role of the lengths
L2 < L1 in the derivation, such that the summation is carried out for the larger length L1 in-
stead. Thence the results (22) and (24) will remain valid upon swapping all occurrences
of L1 and L2 if the aforementioned conditions remain satisfied; we refer to this as the
‘swapped-lengths’ version. As then, L1 � � is necessary, we are restricted to the small-
lattice regime; the remaining condition is equivalent to L1/L

3
2 � 1, as follows from careful

inspection of the (B28) derivation of [11].
A consistency check between the result as it reads above and the swapped-lengths ver-

sion has to take into account that it can only hold in the small-lattice regime, and that the
orders of several terms change. Numerical comparison of both versions and comparisons
with the evaluation of the exact result prw show that, indeed, the swapped-lengths version
reproduces the exact result more accurately than the form given above, as it circumvents
the aforementioned convergence issue. This is only a minute problem however, and both
versions agree and are in good agreement with the exact result (for the square lattice) over a
certain range of distortions (checked for μ = L2/L1 = 1/4 · · ·1 for the small-lattice regime
with S = 4 × 106, a/W = 108, the agreement of the swapped-lengths version with the exact
result extending farther down to μ ∼ 1/10).

5.4 Small Distortion

We now want to approach the question of the aspect ratio influence not from the extreme
case, but in contrast starting to deform a quadratic lattice. Concretely, we ask when (and to
what effect) the random walk feels the global change if we slightly distort a quadratic lattice
of S = L2 sites, keeping W/a and S fixed. The latter condition is necessary since (judging
from previous results) the effect of varying S is dominant otherwise; this hinders us from
simply distorting the lattice lengths to “nearby” integer dimensions ((L−1)(L+1) = S−1).

Therefore we proceed as follows: We treat prw as a function prw(μ,S, ξ), keep the latter
two arguments fixed, and assume that the aspect ratio μ can be varied continuously. Any
statements about the local behavior of that function around the quadratic shape value μ∗
remain sensible as long as higher-order terms do not restrict their validity to intervals too
small. We do not believe this to be the case, basically because we cannot conceive of any
mechanism that could render the behavior of prw|S, ξ=const,μ≤μ∗ non-monotonic.
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The effect of a small distortion could depend on the regime we are in. We now focus on
the small-lattice regime, since we expect aspect ratio effects to be most prominent there, and
since for this case, we could obtain the general asymptotic behavior in Sect. 5.3. Note that
starting from a square lattice with the question at hand rules out the intermediate regime,
and that of large lattices was argued not to be of much interest above.

Now d2p/dμ2 = [S(1 − ξ)]−1 d2(P ∗(0;ξ))−1

dμ2 , and at the extremal point, d2(P ∗(0;ξ))−1

dμ2 =
−(P ∗(0; ξ))−2 d2P ∗(0;ξ)

dμ2 , since the first derivative vanishes ( dp/dμ|μ=μ∗ = 0 due to L1 ↔ L2

symmetry of p). For our purposes we only need to find the sign of the second P ∗(0; ξ)

derivative. To this end, we use the approximation of Sect. 5.3, supposing that the dominant
contributions to P ∗(0; ξ) are also dominating the sign of the second derivative. As a function
of μ, (22) reads

P ∗(0; ξ) = const + ln
√

S/μ

rπ(1 − 2q0)
+ μ/3 + S

(0)

3 /r

2(1 − 2q0)
+

(3η−1)π

36r
μ + S

(1)

3 /r

2(1 − 2q0)S

+ O
(
L−4, (1 − ξ)1/2

)
, (25)

and therefore in the second derivative, only the S3 contributions and those from the square
root term remain, viz.

d2P ∗(0; ξ)

dμ2
≈

1
π
μ−2 + d2(S

(0)

3 + S
(1)

3 /S)/dμ2

2r(1 − 2q0)
. (26)

The S
(1)

3 contribution is irrelevant due to the S−1 factor, and

d2S
(0)

3

dμ2
= 16π

(
e−2πμ + 6e−4πμ + 12e−6πμ + · · ·

)
, (27)

where (as before), we only treat case (a) with r = 1 = η. Numerical evaluation of this term at

μ = 1 yields approximately 0.095. Thence, d2P ∗(0;ξ)

dμ2 > 0, and consequently, d2p/dμ2 < 0:
the encounter probability of the random walk in the small-lattice regime has a maximum
for the quadratic lattice, and it decreases with any distortion from this shape.3 This is the
quantitative foundation of our heuristic arguments in Sect. 5.6.

5.5 The Quasi-One-Dimensional Limit

Finally we want to clarify the nature of the transition to effective one-dimensionality: What
happens if the aspect ratio goes to infinity, so that the macroscopic structure of the lattice
becomes quasi-one-dimensional?

First, we comment on the relationship between the regimes of the one-dimensional and
the distorted two-dimensional lattices. In the 2d-large-lattice regime, � is the smallest length
scale; this cannot be sensibly related to any one-dimensional situation. It is then clear that
the large-lattice regime on a one-dimensional lattice of length L � �1d corresponds to the

3We checked by numerical evaluation that P ∗(0; ξ) is monotonic, or equivalently, that the first derivative
of P ∗(0; ξ) indeed does not change its sign from μ = 1 to μ = 1/4, corresponding to the distortion L1 →
2L1, L2 → 1

2 L2 from a quadratic lattice with even lengths L = L1 = L2. Here we used the swapped-lengths
version of (22) to avoid convergence issues and improve compliance with the exact result as detailed in
Sect. 5.3; the necessary conditions for this to be allowed are easily satisfied.



Diffusion-Limited Reactions in Confined Geometries 323

intermediate regime of the two-dimensional situation, i.e., 1 � L2 � � � L1, the common
feature being that exactly one lattice dimension is much larger than the typical random walk.
The remaining small-lattice regime of the two-dimensional case (1 � L2 � L1 � �) has its
analogon in the small-lattice regime 1 � L � � of the one-dimensional case, in both cases
defined by a diffusion length that exceeds any lattice dimension.

We now consider a scaling limit of the three lengths in the (two-dimensional) small-
lattice regime so that we can apply the result of Sect. 5.3. Since � is the largest length,
we use � → ∞ as the basic scale in powers of which we express the Li behavior. In the
original form (22), L2/L1 → 0 is not permitted, whence we employ the swapped-lengths
version again. Now let L1 ∼ � and L2 ∼ �1/2 (for the latter, any exponent in [1/3,1) can be
chosen, the lower bound presumably an artefact of the details of the involved approxima-
tions only). This implies L1/L

3
2 ∼ �−1/2 → 0, thus satisfying a central assumption for the

approximations, while L1/L2 ∼ �1/2 → ∞, and consequently, the S
(0),(1)

3 terms vanish as
well. Moreover, L1L2(1 − ξ) ∼ �−1/2 → 0 and L1/L2 · L1L2(1 − ξ) → const. This scaling
describes a situation where all lengths diverge, but the larger lattice dimension scales with
the random walk length, while the smaller length increases more slowly to distort the lattice
to vanishing aspect ratio L2/L1.

Putting all of this together we obtain

p−1
rw ≈ 1 + L1L2(1 − ξ)

{
lnL2

rπ(1 − 2q0)
+ L1/L2

6(1 − 2q0)

}
, (28)

where higher-order terms in the brackets were omitted. Here, the logarithmic correction
terms (and coequal O(1) terms in P ∗(0; ξ)) can be seen to die out, while the second cor-
rection term actually approaches a constant. Neglecting all higher-order terms we thence
have

prw ≈ 1 − L2
1(1 − ξ)

6(1 − 2q0)
, (29)

or for the natural choice of a square lattice (q0 = 1/4), and with 1−ξ ≈ �−2 to leading order,

prw ≈ 1 − (L1/�)
2

3
. (30)

We compare this to the corresponding one-dimensional small-lattice regime result (62),
which implies (cf. Appendix E)

prw,1d ≈ 1 − (L/�1d)
2

6
. (31)

The proper scaling limit results in a crossover from logarithmic correction terms in the full
two-dimensional small-lattice regime to the squared length ratio correction we found for
the corresponding genuinely one-dimensional small-lattice regime. Only the larger length
(scaling as the random walk length) remains, while the smaller one has disappeared from
the result. Note that the appropriate rescaling of the random walk length, �1d → �/

√
2 (ac-

counting for the splitting up of the number of steps between the two dimensions, as ex-
plained in Sect. 5.2 and in Appendix E) reproduces the exact numerical pre-factor of the
leading correction term, as it should.
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5.6 Discussion

We now explain in a coherent fashion the main effects which govern the behavior of the
encounter probability on a distorted lattice, as shown in Figs. 4 and 5. We continue to keep
S and ξ (or �) constant.

The total decline from the peak value of prw to its minimum for the fully distorted
S · 1 lattice strongly depends on the absolute lattice size: While for the absolutely large
lattice, the probability dropped to less than 0.5% of that in the quadratic case peak, we
still have 1/6 of the peak value left when L2 = 1 with the absolutely small lattice. The
quadratic lattice has either p ∼ 1 or p ∼ (a/W)/S, but upon maximal distortion it in-
variably ends effectively one-dimensional (with halved hopping rate) in its 1d-large-lattice
regime, such that p1d ∼ √

a/W/S, see Appendix E. Fixing the quadratic lattice regime
via SW/a then implies that p also stays fixed as a function of S, and hence yields the
ratio p/p1d ∝ S

√
W/a = √

SW/a
√

S ∝ √
S in both regimes. With increasing length the

two-dimensional walk misses many sites [24], but still sweeps an area of order �2 in the
large-lattice limit, while the one-dimensionality of the extremely distorted case (also in its
large-lattice regime) changes the � power to the unfavorable. Obviously, a transition from a
quadratic 2d-small-lattice into the 1d-small-lattice regime would only yield minute correc-
tions to near-perfect encounter probability.

As for the shape of the prw dropoff, there are two effects which cooperate in decreasing
the encounter probability due to distortion, related to the dynamics and the initial conditions
of our problem.

Regarding the dynamics, i.e., the exploration of the surface, consider the effect of ‘wasted
steps’ (described in Sect. 5.2) in the smaller lattice dimension. Close to the quadratic shape
there are no wasted steps, while close to maximal distortion the effect is most pronounced,
as steps in the smaller direction are nearly useless indeed—but even there the effect is that
of halving the hopping rate, or modifying the random walk length � by a factor of O(1).
Expecting only power-law behavior of p in the lengths, this hardly shows on our logarithmic
scale. Motion in the smaller dimension L2 does become ‘wasteful’ once � � L2, when more
steps or further reduction of L2 do not help the walker to get closer to the target: Its residence
probability has already spread out in this direction, and new territory can only be explored by
stepping out in the other dimension (L1). But in a regime where this substantially worsens
the chance to reach the target, it is owed to extending the larger lattice length only. Hence the
‘dynamic’ effect lies in the changing ratios L1,2/� upon distortion, governing how fast or to
what extent the lattice is explored in each direction, and eventually switching the (refined)
regimes.

The second effect is ‘static’ in that it depends on the initial conditions and not on the
dynamics of the system. We always assume deposition of the walker homogeneously dis-
tributed over the lattice. Even when, in the small-lattice regime, the largest parts of the lattice
will be swept by most walks, it is still an obstacle for the individual walk if it starts further
away from the target. Now as soon as the lattice becomes distorted, the complete distribution
of the walker’s initial distance (and in particular its average) to the target is shifted to larger
distances, as one can convince oneself of with a simple sketch. For the large-lattice regime, a
region of an extension � surrounding the target is not directly affected by distortion. But the
spatial probability distribution of an immortal walker is then basically a Gaussian spreading
with time, and relegating sites to a slightly further distance greatly reduces the chance for
a walker starting there to reach the target in a given number of steps. Hence rare long and
successful walks are additionally suppressed by shifting the initial distance distribution.

The relative importance of these effects is not easily quantified in general, as it depends
on the absolute lattice size, the regimes, and the aspect ratio of the lattice, but we will
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explain their influence in the different regimes of L1,2 and �. Any numerical O(1) factors in
the comparisons will be omitted.

First, let � � L1,2, the standard large-lattice regime in which the walk is always of two-
dimensional nature. As argued before, the different lengths of the lattice hardly have any
effect here, and the encounter probability is governed by the ratio p ∼ �2/S � 1, indepen-
dent of the aspect ratio. This region corresponds to the small peak plateaus at the right of
Fig. 5. In this regime, only the static effect might be important.

For the small-lattice regime L1,2 � �, the encounter probability is close to unity. A small
fraction of walk realizations does not lead to recombination, but in this regime, avoiding
the target does not become much easier when the lattice is distorted. Now the aspect ratio
determines whether the random walk behaves essentially one- or two-dimensional. Based
on (28) of Sect. 5.5 we expect the crossover scale between the two types at an aspect ra-
tio of roughly μ = 1/ lnL2 below which (small-lattice) one-dimensional behavior prevails,
namely p ≈ 1 − (L1/�)

2/3. The main difference to the two-dimensional behavior (apart
from the absence of logarithmic corrections) is that only the larger length still enters. But
the respective term has to be small anyway for the expression to be applicable, and we can-
not expect to see it in the plots. We thus only have a minute effect of the distortion in this
regime as well, a fact easily seen at the peak plateaus in Fig. 4. Actually, the plateaus are
more pronounced in this case than for the corresponding large-lattice plots, because not even
the static effect has any significant influence anymore—basically the whole lattice is swept
anyway.

Finally consider the intermediate case L2 � � ≤ L1. This regime is more complicated
since we do not know whether dying or meeting the target is dominant in setting the resi-
dence time of the walker and the magnitude of p. The aspect ratio determines whether we
deal with a genuinely two-dimensional lattice, or rather with a lattice so elongated that it is
of one-dimensional nature.

If μ = L2/L1 � 1 is extremely small, we can effectively consider the system as one-
dimensional and in its 1d-large-lattice regime. Homogenization in the L2-direction is much
faster than the spreading in the L1-direction then, and thence the probability to reach the tar-
get is essentially that of reaching the projection of the target position onto the L1-dimension.
This roughly coincides with the probability for the walker to start within a reach � of the
projected position, and this is p ∼ �/L1. For the effectively one-dimensional intermediate
lattice this reasoning is justified, as is shown by Appendix E.

In contrast, if the aspect ratio is not small enough for this viewpoint, the nature of the
two-dimensional random walk shows: it spreads without fully exploring the swept area
(rather with increasing ‘sponginess’ of the set of visited sites, again a specialty of spa-
tial dimension two). Consequently, we rather expect an S/�2 dependence with typical log-
arithmic corrections as for the quadratic case. L2/L1 is only moderately small now, so
we may use the result of Sect. 5.3 provided that (L1/�)(L2/�) � 1. From this we get
p ≈ 1 − (S/�2)c1(const.+ lnL1), a functional dependence similar to the small-grain expan-
sion for the quadratic lattice case. The crossover aspect ratio between both types of behavior
could not be determined, because in this regime, the expansion breaks down on the way to
the one-dimensional asymptotics. For the quadratic periodic lattice, the logarithmic correc-
tion emerges from integration of the slowly decaying return probability of long walks; with
a distorted lattice, the dominant bounding contribution stems from the larger length only, as
is most easily seen by rescaling the approximate integral expression, Appendix C.

This intermediate regime governs the behavior of the Figs. 4 and 5 once we leave the
plateau around the quadratic shape. In all cases, we first enter a linear decline on the logμ

scale, as predicted for the two-dimensional intermediate regime (∼− lnL1 ∝ 1
2 logμ with S
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constant). This behavior roughly starts once the larger (smaller) length of L1,2 becomes of
the order of �, depending on whether we started in the small-(large-)lattice regime, which is
precisely the condition to enter the intermediate regime.

For the leftmost (most distorted) part of the plots, the absolute size of the lattice becomes
crucial. On absolutely large lattices (thick lines in Figs. 4 and 5) the linear decline ends in
an exponential shape close to the fully distorted lattice. This is explained by the effective
one-dimensionality as argued above; we end up with the 1d-large-lattice behavior p ∼ �/L1.
The crossover aspect ratio is read off to be roughly between 1/400 and 1/1000.

In stark contrast, the lattices of small absolute size (thin lines in Figs. 4 and 5) do not
show any clear deviation from the 2d-intermediate-regime decline down to full distortion.
First, the total decline is not as extreme, as explained before. Second, we still are in the
1d-limit for full distortion. But leaving μ = 1/S, immediately two-dimensional effects and
the corresponding logarithmic terms (linear on our scale) dominate the p behavior, because
the aspect ratio is far less extreme than for the absolutely large lattices—consistently, the
crossover aspect ratio determined there is not reached here.

6 Conclusions

In this work, we have thoroughly examined the encounter probability of two mortal ran-
dom walkers on a periodic lattice as a model of a confined geometry. We compared the
results of continuum diffusion models, exact random walk treatments and their asymptotic
behavior and heuristic results obtained from standard random walk analysis. We highlighted
their similarities as well as explained the crucial differences, most importantly the features
responsible for the slow logarithmic convergence to the continuum limit, which is a di-
rect consequence of the criticality of dimension two for diffusion and random walks. The
discrete-time random walk results have been shown to be in excellent agreement with ki-
netic Monte Carlo simulations of the continuous-time version that naturally lends itself to
physical applications. On a side note we could corroborate earlier claims that the lattice type
used is of minor importance to all results discussed herein.

The second half of this article has been devoted to the analysis of the influence of the
geometry of the lattice, examined at the example of an aspect ratio differing from unity. We
considered an extremely distorted lattice and explained our findings for this situation. Then
we generalized an early result by Montroll to the distorted situation, and thus could examine
the effect of distortion starting from a quadratic lattice. Moreover, we determined a scaling
limit in which the dying out of logarithmic terms (characteristic for the two-dimensional sit-
uation) in favor of algebraic corrections (typical of the one-dimensional case) can be nicely
seen and indeed, the one-dimensional asymptotic behavior is fully recovered. Finally, we
gave a general explanation of the effects which govern the changing encounter probability
and the regimes to which they pertain.

We believe that this work fills a gap in the vast literature on random walks and first-
passage problems. Most importantly, we have achieved the goal stated in the abstract: We
have shown that the (completely analytic) treatment of the simple discrete-time random walk
model provides a full quantitative understanding of the encounter probability for the (homo-
geneous) continuous-time reaction-diffusion system as simulated by the kinetic Monte Carlo
method, and this holds for all the aforementioned aspects including the shape of the lattice
and its structure. These results are important for many applications ranging from astrochem-
istry to biophysical problems, and they equally matter for both the fundamental theory as
well as for the numerical simulation of reaction-diffusion systems.
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Further work will be centered on the role of quenched and annealed disorder in the rates
of hopping and dying of the walkers, mainly from the point of view of the recombination
efficiency of systems such as those described herein. An important next step will be the
assessment of the validity of the master equation framework in the homogeneous situation,
where hitherto, spatial correlations between random walkers on the lattice have been tacitly
neglected.

Acknowledgements We thank Ofer Biham for useful discussions. This work was supported by Deutsche
Forschungsgemeinschaft within SFB/TR-12 Symmetries and Universality in Mesoscopic Systems.

Appendix A: Derivation of prw

We closely follow and mimic the notation of [17] without citing individual known results.
All of the techniques used here have been devised quite some time ago, see e.g. [16] with
the exact same formula as (42), and we basically put together all the necessary pieces in an
appropriate form.

We deal with a finite periodic homogeneous lattice with S = ∏d

j=1 Lj sites in total, or
a d-dimensional torus with extensions Lj in the j th direction. Onto this lattice, we put
two random walkers (in discrete time), starting at random sites, independently and homoge-
neously distributed. They do not interact except when they meet. The walkers are assumed
mortal (corresponding to desorption) with constant and equal survival probability ξ per step.
Our question is: “What is the probability that these two walkers meet before one of them
dies?”

This problem can be mapped to that of a single walker, starting from a random site
s0, with the same survival probability per step, the question being with what probability it
eventually reaches a certain fixed site s∗ on the lattice without dying prematurely (all sites
are labeled by a variable s whose structure is irrelevant right now).

Dying and moving of the walker are independent. Thence

Pr{Mortal walker reaches site s∗ for the first time on the kth step}
= Pr{Mortal walker has completed at least k steps}

× Pr{Immortal walker reaches s∗ for the first time on the kth step}
= ξk · Fk(s

∗|s0), (32)

where Fk(s|s0) is the probability (of an immortal random walker) of arriving at site s for the
first time on the kth step, given that the walk started at site s0. It should be noted that we
adopt the convention that F0(s|s0) = 0, and therefore do not count a walker already starting
at s0. We do not care for the time when this first passage of s∗ occurs, and are therefore
interested in the quantity

F(s∗|s0; ξ) :=
∞∑

k=0

ξkFk(s
∗|s0), (33)

which happens to be the generating function of Fk(s
∗|s0). One can convince oneself that, by

the definition of Fk as the first-passage probability, every encounter is counted only once,
and so F(s∗|s0; ξ) is the probability of a mortal random walker with survival rate ξ , starting
from s0, to reach s∗ before dying.
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For the remainder of the derivation we only have to be concerned with immortal (usual)
random walkers. Then for any random walk, there is the relation (e.g. [17, (3.27)])

F(s|s0; ξ) = P (s|s0; ξ) − δs,s0

P (s|s; ξ)
, (34)

where P (s|s0; ξ) is the generating function of Pk(s|s0), the probability that the random
walker, starting at site s0, is at site s on the kth step, with the convention that P0(s|s0) = δs,s0 .

However, regarding the convention used for the first-passage probability, we want to
count a walker that starts at the target site as “reaching it for the first time” on the 0th step,
and not count later returns. Denoting the corresponding probability by F̃k(s|s0), it is related
to the original one by

F̃k(s|s0) = δs,s0δk,0 + (1 − δs,s0)Fk(s|s0). (35)

For the generating functions this implies

F̃ (s|s0; ξ) = δs,s0 + (1 − δs,s0)F (s|s0; ξ), (36)

and inserting (34) yields

F̃ (s|s0; ξ) = P (s|s0; ξ)

P (s|s; ξ)
. (37)

Now we can already write down the answer to our problem in very general terms. What
we actually want is an average S−1

∑
s0∈Ω F̃ (s|s0) of the revised first-passage probability

(37) over all starting sites s0 in our finite periodic lattice Ω , giving us the encounter proba-
bility of the original two random walkers:

prw =
∑

s0∈Ω P (s|s0; ξ)

SP (s|s; ξ)
. (38)

The apparent dependence on the target site s will vanish in passing to a homogeneous setting.
For further evaluation, we need to obtain P (s|s0; ξ). Let us for the time being denote by

this quantity the generating function of the residence probability of a random walk on an
infinite lattice. Furthermore, our walk is homogeneous or translationally invariant, and we
may therefore use a single vector l pointing from the starting site s0 to the final site s as our
variable. Such ‘lattice vectors’ have d components, all of which take arbitrary integer values
that can be thought of as components of a ‘spatial vector’ with respect to the d fundamental
vectors of the lattice. Then it is well-known that (e.g. [17, Sect. 3.3.1])

P (l; ξ) = 1

(2π)d

∫

[−π,π ]d
ddk

exp(−ilk)

1 − ξλ(k)
, (39)

with the integration domain the first BRILLOUIN zone. λ(k) is the structure function of the
walk, defined as

λ(k) =
∑

l

exp(ilk)q(l), (40)

the sum running over all lattice vectors, and q(l) being the probability of a step translating
by l. Since

∑
l q(l) = 1, |λ(k)| ≤ 1.
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The transition to a truly finite periodic lattice is now easy: Attaching a star to the respec-
tive residence probabilities, we have

P ∗
n (l) =

∑

m

Pn(l + Lm), (41)

where L = diag(L1, . . . ,Ld). The sum runs over all translation vectors of the (infinite) lat-
tice, and this implies a completely analogous relation for the generating functions. Obvi-
ously, P ∗(l + Lm) = P ∗(l) for an arbitrary m in the infinite lattice. From now on the vector
l is understood to lie in the subset Ω of the infinite lattice that stands for the finite periodic
lattice (we use the same symbol for both the finite sets of sites and of associated translation
vectors). It can be shown that consequently we have4

P ∗(l; ξ) = 1

S

∑

m∈Ω

exp[−2πil(L−1m)]
1 − ξλ(2πL−1m)

. (42)

The sum over the finite lattice Ω is explicitly a multiple sum over the components of the
vector m, each ranging between mj = 0 · · ·Lj − 1.

Rewriting (38) for the homogeneous walk and substituting the appropriate starred prob-
abilities, we obtain

prw =
∑

l∈Ω P ∗(l; ξ)

SP ∗(0; ξ)
. (43)

The numerator of this expression is nothing but the ξ transform of
∑

l∈Ω P ∗
n (l), but this is

unity due to conservation of the immortal walker, so that

∑

l∈Ω

P ∗(l; ξ) = 1

1 − ξ
. (44)

Again using (42) for the denominator of (43) yields a general expression for the encounter
probability on a homogeneous regular finite periodic lattice, namely (1) of the main text.

It is often desirable to consider a different convention that does not allow both walkers
to start at the same site. To this end, one simply has to exclude the lattice distance 0 (when
talking about translationally invariant walks) from the average (38), the result of which is
given in the main text as well. Note that this is not equivalent to simply employing the
original first-passage probability F instead of F̃ , which would allow this situation, but not
appreciate it as an encounter, and would simply lead to ξprw instead of prw.

Appendix B: Evaluation of One Sum

We now restrict ourselves to a still fairly large class of walks, namely those with structure
functions

λ(k) = 2q0[cos k1 + cos k2] + 2(q1 + q2) cos k1 cos k2 + 2(q2 − q1) sink1 sink2. (45)

4The underlying identity reads
∑

m exp[−i(Lm)k]/(2π)d = ∑
m δ(k − 2πL−1m)/(

∏
j Lj ) and works

component-wise. In a way, this is a more general expression than that for the infinite lattice, which can
be recovered by sending Lj → ∞.
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Such a structure function belongs to walks with transition probabilities q0 to take a step into
either lattice unit direction, and q1 and q2 the probabilities to step into direction (1,1) or
(−1,−1), and (1,−1) or (−1,1), respectively, subject to the normalization 4q0 + 2(q1 +
q2) = 1. Clearly, this includes the aforementioned cases of the main text: The isotropic
square lattice ‘type (a)’ corresponds to q0 = 1/4 and q1 = q2 = 0, and the isotropic triangular
lattice walk ‘type (b)’ is represented by q0 = q2 = 1/6, q1 = 0.

For this class of walks, one summation can be explicitly evaluated [11]. The result can
be generalized to the L1 �= L2 case by some easy accounting work and then reads

P ∗(0; ξ) = 1

L1

L1−1∑

m1=0

[1 − 2q0ξ cos(2πm1/L1)]−1[1 − ρ2
m1

]−1/2 1 − x
2L2
m1

1 − 2x
L2
m1 cosL2φm1 + x

2L2
m1

.

(46)
Here, 0 < xm1 = [1 − (1 − ρ2

m1
)1/2]/ρm1 < 1, and with

w1 = 2ξ [q0 + (q1 + q2) cos(2πm1/L1)]
1 − 2ξq0 cos(2πm1/L1)

,

(47)

w2 = 2ξ(q1 − q2) sin(2πm1/L1)

1 − 2ξq0 cos(2πm1/L1)
,

0 < ρm1 < 1 and φm1 are given by w1 + iw2 = ρm1e
iφm1 . In general, this yields

ρ2
m1

= w2
1 + w2

2 =
(2ξ)2

[
q2

0 + q2
1 + q2

2 + 2q1q2 cos 4πm1
L1

+ 2q0(q1 + q2) cos 2πm1
L1

]

[1 − 2ξq0 cos(2πm1/L1)]2
, (48)

and

tanφm1 = (q1 − q2) sin 2πm1
L1

q0 + (q1 + q2) cos 2πm1
L1

(49)

(whenever well-defined).
For case (a) one obtains ρm1 = [2/ξ − cos(2πm1/L1)]−1 and φm1 = 0, such that

P ∗(0; ξ) = 1

L1

L1−1∑

m1=0

2/ξ√
ρ−2

m1
− 1

× 1 + x
L2
m1

1 − x
L2
m1

. (50)

For type (b) one has

ρm1 =
√

2
√

1 + cos(2πm1/L1)

3/ξ − cos(2πm1/L1)
= 2|cos(πm1/L1)|

3/ξ − cos(2πm1/L1)
(51)

and

tanφm1 = − sin(2πm1/L1)

[1 + cos(2πm1/L1)] = − tan(πm1/L1) (52)

(whenever well-defined), which yields φm1 = −π(m1/L1 − �2m1/L1�). The peculiar form
of the angle is necessary to assure

∣∣φm1

∣∣ ≤ π/2 corresponding to w1 ≥ 0, and while the
chosen expression may result in a wrong sign of sinφm1 , only the unaffected cos(L2φm1) is
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used in the remainder. Hence we obtain

P ∗(0; ξ) = 1

L1

L1−1∑

m1=0

3/ξ

2|cos(πm1/L1)|
1√

ρ−2
m1

− 1
× 1 − x

2L2
m1

1 − 2x
L2
m1 cos(L2φm1) + x

2L2
m1

, (53)

and throughout, xm1(ρm1) as given above.
The alert reader may object that, in case (b), there is actually one term for which both

w1 = 0 = w2 and thus ρm1 vanishes (see our valid explicit result for the latter), namely for
even L1 and m1 = L1/2. Hence, xm1 , φm1 and the last expression for P ∗(0; ξ) are ill-defined
then. From the definition of xm1 one can see that for ρm1 → 0+, xm1 ≈ ρm1/2 → 0+ as well,
and the second line of (46) (corresponding to the evaluated ‘inner sum’ in the derivation
of [11]) converges to unity, which is the correct value of the original quantity. Our last
expression complies with this via canceling singularities—we chose the simplest form of
the result, which has to be slightly altered for numerical evaluation.

Appendix C: Large Lattice Approximation

By letting L1,2 → ∞ in P ∗(0; ξ) of (1) one obtains a double integral, which after two linear
substitutions reads

p−1
rw

(1 − ξ)S
= P (0; ξ) = 1

(2π)2

∫

[0,2π ]2
du1 du2

1 − ξλ(u)
. (54)

λ periodicity once again allows us to shift the patch of integration to the BRILLOUIN zone
B defined in Appendix A. As is shown in the Appendices of [17], in terms of the complete
elliptic integral of the first kind,

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, with |k| < 1, (55)

one can derive that P (0; ξ) = 2
π
K(ξ) for the square, and

P (0; ξ) = 6

πξ
√

(c− + 1)(c+ − 1)
× K

(√
2(c+ − c−)

(c− + 1)(c+ − 1)

)
(56)

for the triangular lattice, where c± = 3/ξ + 1 ± √
3 + 6/ξ . Now we need the expansion of

the elliptic integral for k � 1 (which is also the case for the triangular lattice if ξ itself is
close to unity), viz.

K(k) =
∞∑

n=0

[(
1
2

)
n

n!

]2

(1 − k2)n
[−(1/2) ln(1 − k2) + ψ(n + 1) − ψ(n + 1/2)

]
, (57)

here (a)n = �(n+ a)/�(a) is the POCHHAMMER symbol, equal to a(a + 1) · · · (a + n− 1)

for positive integer n. Using these expressions in the exact results for P (0; ξ), one obtains

P (0; ξ) = [1 + O(1 − ξ)] ×
{

1
π

ln[8/(1 − ξ)] square lattice,√
3

2π
ln[12/(1 − ξ)] triangular lattice.

(58)

This yields the expressions for prw presented in the main text.
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Appendix D: Simulation Results for pmc

Figures 6–12 show the relative error (per cent) 100 · (p̃mc − p̃rw)/p̃rw as a function of the
lattice size S, for quadratic lattices. Lattice sizes and rate ratios a/W are chosen as described
in Sect. 3.3, so that one plot roughly corresponds to a fixed regime and about constant p,
to keep the standard deviation of the same order of magnitude. Outside these parameter
ranges, nothing interesting happens; in the large lattice regime, the leftmost data points are
omitted as they no longer satisfy a/W � 1. We have plotted a corridor of half width σ̃

around perfect coincidence to show that the discrepancy between analysis and simulations
is statistically insignificant.

Fig. 6 Relative difference of
p̃mc w.r.t. p̃rw for
SW/(4a) = 10−4, type (a)
(dashed / squares), type (b)
(dotted / triangles)

Fig. 7 SW/(4a) = 10−3

Fig. 8 SW/(4a) = 10−2

Fig. 9 SW/(4a) = 10−1
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Fig. 10 SW/(4a) = 100

Fig. 11 SW/(4a) = 101

Fig. 12 SW/(4a) = 102

Figures 13–16 show corresponding simulation results for rectangular lattices of varying
aspect ratio. Here S is constant for one plot. We restrict ourselves to S = 400 and S =
4 × 106 as examples of absolutely small and large lattices, respectively. Further, we keep
the “regime” (in the original sense introduced for quadratic lattices) constant as well: for
S = 400, we choose a/W = 100 and a/W = 104, for S = 4 × 106 we test with a/W = 106

and a/W = 108 (the latter figures belonging to the small-lattice regime), but note that the
refined regimes for L1 �= L2 actually change when distorting the lattice. We have chosen
our values so that the larger length L1 exceeds the random walk length � in the large-lattice
regime throughout, and that it is much smaller than this length in the small-lattice regime
for the quadratic case, but finally becoming much larger than it when distorting the lattice.
Again, we show the relative error of simulations with respect to the random walk result in
per cent, and plot a standard deviation (as obtained from p̃rw) corridor for comparison.

Appendix E: Asymptotics of the Truly One-Dimensional Result

For the one-dimensional symmetric random walk with structure function λ(k) = cos k and a
lattice of S ≡ L sites, we have

P ∗(0; ξ) = 1

L

L−1∑

m=0

1

1 − ξ cos(2πm/L)
. (59)
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Fig. 13 Relative difference of
p̃mc w.r.t. p̃rw for S = 4 × 102,
W/a = 10−2, type (a)
(dashed / squares), type (b)
(dotted / triangles)

Fig. 14 S = 4 × 102,
W/a = 10−4

Fig. 15 S = 4 × 106,
W/a = 10−6

Fig. 16 S = 4 × 106,
W/a = 10−8

The identity of Appendix A in [11] (with w1 = ξ , w2 = 0, so that ρm1 = ξ and φm1 ≡ 0, and
xm1 = [1 − (1 − ξ 2)1/2]/ξ ) then yields

P ∗(0; ξ) = 1√
1 − ξ 2

1 + xL
m1

1 − xL
m1

= 1√
1 − ξ 2

ξL + [1 − (1 − ξ 2)1/2]L
ξL − [1 − (1 − ξ 2)1/2]L . (60)

For comparison with the asymptotic two-dimensional behavior, we evaluate the asymp-
totics of the 1d-expression for a ‘small’ lattice, i.e. for L � � = √

ξ/(1 − ξ). Let α =√
1 − ξ 2 � 1, and note that this is not exactly the α of [11]. However, L/� ≈ L

√
1 − ξ =

L
√

1 − √
1 − α2 ≈ Lα/

√
2, and since this is to be � 1, we can still use Lα � 1 in the fol-

lowing. With 1 − ξ = 1 − √
1 − α2 and p−1

rw = L(1 − ξ)P ∗(0; ξ) we then obtain after minor
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manipulations

p−1
rw,1d = L[1 − (1 − α2)1/2]

α

1 + (
1−α
1+α

)L/2

1 − (
1−α
1+α

)L/2 . (61)

Straight-forward expansion in Lα � 1 yields

p−1
rw,1d = 1 + (Lα)2

12
+ O(Lα)3, (62)

where we omitted all terms of relative order α. This is sufficient for the sought scaling limit
L → ∞, α → 0 while Lα � const., and it is additionally justified by a MATHEMATICA

check of our calculations, which shows that the only interesting α orders left out in the
result are terms of O(α2) and thus much smaller than (Lα)2 = L2(1 − ξ 2) ≈ 2(L/�)2.

Obviously, the most important difference compared to the 2d case is the absence of log-
arithmic terms, which are a characteristic sign of the marginal dimension two.

For completeness, let us also give the large-lattice asymptotics, i.e., for the case Lα � 1.
Starting from the still exact (61), we use (1 − α)/(1 + α) = 1 − 2α + O(α2). For Lα � 1,
this raised to the L/2 power is much smaller than unity, the correct expansion thus reading
exp(−Lα)(1 + O(Lα2)), and here we assume that terms of the latter relative order can
be omitted as being much smaller than unity—this is an example that may be refined as
necessary. One thus obtains the large-lattice result

prw,1d = 2

Lα

(
1 − 2e−Lα + O(e−LαLα2, e−2Lα)

) ≈ √
2

�

L

(
1 − 2e−√

2L/�
)

. (63)

Note that in this regime, the ratio of lengths no longer appears squared. In one dimension and
for large lattices, the essential question for the encounter probability is whether the walker
is deposited in the range � from the target, and the probability for this to happen is the length
ratio raised to the lattice dimension. The difference to the two-dimensional case is that the
1d random walk explores a dense region instead of a sponge-like structure.

Lastly, corresponding asymptotics for the extremely distorted version of the originally
two-dimensional random walk are obtained by a mere rescaling � → �/

√
2, as can be seen

from Sect. 5.2.
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